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Experimental studies on the adaptive vibration control of composite beams with
a piezoelectric actuator have been performed using a neural network controller. We
experimentally investigated the variations in natural frequencies and actuation
characteristics of the composite specimens according to delaminations in the bonding layer.
Numerical simulation has been performed for adaptive vibration controls of the composite
specimens with delaminated piezoelectric actuator using the neuro-controller. A digital
signal processor (DSP)-based hardware for the real-time adaptive vibration control
experiment was prepared. Using the neuro-controller, the adaptive vibration control
experiment has been performed. The vibration control results show that the present
neuro-controller has good performance and robustness with respect to the system parameter
variations.
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1. INTRODUCTION

In the past several decades, composite materials have been increasingly used in many
advanced structural applications such as modern aircraft structures in order to reduce
structural weight and to increase performances. However, these lightweight composite
structures are prone to excessive vibration, which might degrade system performances and
sometimes yield structural failure. Therefore, there have been active research interests on
the structural vibration suppression using passive and/or active control methods. Among
several e!orts, active vibration control using smart materials has been the recent interest
[1]. Especially, piezoelectric sensors and actuators have attracted attention in the active
vibration control area because of several promising properties such that they have
distributed nature, wide frequency-band characteristics, and many others [2}5]. To date,
time-invariant control algorithms such as Lyapunov algorithms in references [2, 3], and
optimal control algorithms in references [4, 5] have been usually used in the active
vibration control of smart structures.

In the real service life, however, all structures are subjected to repeated loads, low- and
high-velocity impacts, and thermal stresses. These environmental loads can sometimes
cause local structural failure, and hence result in changes in dynamic characteristics of
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structures [6]. In addition, structural systems having time-varying characteristics without
permanent structural damages can be easily found. For example, the dynamic
characteristics of a spacecraft can vary due to severe temperature variations during its
attitude changes. When dynamic characteristics of structures are varying, vibration control
using conventional linear time-invariant control algorithm may result in ine$cient
vibration suppression, or even amplify structural vibration until structural failure occurs.
Among several causes for system variations, delamination in the piezoelectric bonding layer
is the main interest in this study. Kim and Jones [7] studied variations of natural
frequencies of beams with delamination of various sizes in piezoelectric bonding layer. They
showed that the delamination leads to decrease in natural frequencies. In the present paper,
these parameter variations have been measured by using the experimental modal testing. In
this study, the adaptive feedback control methodologies using neural networks are
investigated for the active vibration suppression of composite structures subject to sudden
delamination.

Neural networks have been successfully applied in several engineering areas such as
pattern recognition and optimization problems, because neural networks have excellent
interpolation capabilities so that the mapping between inputs and outputs of non-linear
systems can be e!ectively obtained [8]. Due to these good interpolation capabilities,
successful system identi"cations in a noisy environment can be achieved using neural
networks. Besides these classical applications, there have been increasing e!orts to make use
of arti"cial neural networks for robust adaptive control in several engineering "elds such as
high-performance aircraft/missile control and robot trajectory planning and so on [9].

The research on neural network-based vibration controls can be divided into two
categories: feedforward and feedback control methods. Feedforward controls generally
utilize a reference signal, which is correlated with the impending primary disturbance, for
the derivation of control input. Snyder and Tanaka [10] developed a neural network/
algorithm, which can be regarded as a non-linear generalization of transversal "lter/
"ltered-x LMS algorithm, for non-linear feedforward-control systems. They also conducted
experimental works to demonstrate the utility of the algorithm, showing that it is well suited
for a non-linear control problem [11]. On the other hand, feedback controls generally rely
on the error signals to construct control signals for the non-availability of the reference
signals. Narendra and Parthasarathy [12] investigated several methods about identi"cation
and control of dynamical systems using neural networks. KrishnaKumar and Montgomery
[13] performed adaptive control of large #exible structures using a neuro-controller. They
used a clamped-free beam specimen as an experimental model and applied both o!-line
neuro-controller training and on-line fast-learning with error critics for the experimental
study. Rao et al. [14] presented numerical studies of adaptive controls for vibration
suppression of smart structures with shape memory alloy (SMA) actuators.
Chandrashekhara and Smyser [15] developed a numerical dynamic model for the active
vibration control of laminated doubly curved shells. In their study, a neural network
controller was designed and trained o!-line to emulate the performance of linear quadratic
Gaussian with loop transfer recovery (LQG/LTR) controller. Vibration controls using
neural networks with Marquardt algorithms and optimal neural design methodologies
using the Taguchi method have also been studied [16, 17].

Even though many relevant works have been accomplished, experimental studies on
real-time adaptive vibration control are still rare. Since one of the key features of smart
structures is adaptability, we are very interested in the implementation of adaptive control
that has su$cient robustness and generality.

In summary, neuro-adaptive feedback control algorithms have been applied to suppress
the vibrations of composite structures subject to sudden delamination in the present study.
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In what follows, we "rst experimentally investigate the variations of dynamic characteristics
of composite structures due to delaminations. In section 3, the basic learning method of
neural networks is introduced. In section 4, the adaptive system identi"er and controller
model are proposed, and the performance of the model is examined by numerical
simulation. Finally, the real-time implementation of the adaptive controller was performed
using a digital signal processor (DSP). The present adaptive control method was proved to
be robust with local structural failure. Note that, in this paper, only delamination e!ect has
been considered as the origin of the system variations, but there is every reason that the
present method can also be used in other structural systems with diverse non-linear and/or
time-varying characteristics.

2. DYNAMIC CHARACTERISTICS OF COMPOSITE BEAMS WITH DELAMINATION

The equation of motion of a structural system with a piezoelectric actuator in modal
co-ordinate can be written as follows:
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Distributed piezoelectric actuator has several advantages over conventional actuators,

but it serves not only as an active component but also as a passive load-bearing element.
Therefore, it is di$cult to estimate the characteristics of piezoelectric actuation force f
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which is a!ected by the size and location of the actuator, bonding layer properties, mode
shapes, and the material properties of piezoelectric actuator itself. In this analysis,
variations of natural frequencies and modal control forces of composite specimens with
a delaminated piezoelectric actuator are experimentally investigated.

Composite specimens were prepared from unidirectional graphite/epoxy prepreg tapes.
the prepreg tapes were laid up into a laminate with appropriate layer angles. Layered
prepreg were cured in the panel autoclave at KAIST under the curing cycle recommended
by the manufacturer. A piezoelectric actuator was bonded on the surface of laminated
composites using epoxy adhesive. In order to prepare delaminated specimens, a very thin
Te#on "lm was inserted in the desired location. Figure 1 and Table 1 show con"gurations
and dimensions of the specimens used in this experiment. In order to investigate modal
control force, natural frequencies and mass-normalized mode shapes were "rst obtained
from the conventional modal testing by using a laser displacement sensor and an impact
hammer. The normalized mode shapes at a certain point can be obtained by coinciding the
sensing and impacting points. After obtaining dynamic characteristics of the specimen, the
Figure 1. Geometry of the composite beam with a delaminated piezoceramic actuator.



TABLE 1

Dimensions and con,gurations of the composite beams with a delaminated piezoceramic
actuator

Stacking Dimensions of Dimensions of
Specimen sequence host structure piezoceramic Delamination Thickness of
no. (Gr/epoxy) ¸]b]t (mm3) ¸

p
]b

p
]t

p
(mm3) size (mm) adhesive (mm)

1 [0/$45/90]
s

220]20]0)835 50]20]0)4 0 0)04
2 [0/$45/90]

s
220]20]0)835 50]20]0)4 12)5 0)04

3 [0/$45/90]
s

220]20]0)835 50]20]0)4 25)0 0)04
4 [0/$45/90]

s
220]20]0)835 50]20]0)4 37)5 0)04

Note: Displacement sensor location for control: 20 mm from the clamped boundary.

Figure 2. Frequency response functions for the composite specimen with a delaminated piezoceramic actuator.
**, 0% delamination; --------, 25% delamination; **, 50% delamination; * ) ) , 75% delamination.
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transfer function between the input voltage to the piezoelectric actuator and de#ections
obtained by the laser sensor has been measured. The actuation characteristics can be
obtained from this transfer function. Further details can be found in reference [18].

Figure 2 shows the frequency response functions of the specimens with a delamination of
various sizes. Variations of the "rst and second natural frequencies and modal control
forces are summarized in Table 2. It is clearly shown that natural frequencies and modal
control forces decrease as the length of delamination increases. Speci"cally, the "rst modal
actuation force of the specimen with 75% delamination reduces to one-seventh of that of the
normal specimen. The measured modal control force of the second mode of 25%
delaminated specimen is a little higher than that of the normal specimen. The reason is that
the curvature of the second mode shape changes at the bonding location of piezoelectric
actuator. Therefore, there is a cancellation of piezoelectric actuation for the normal
specimen.

As investigated above, natural frequencies and modal control forces vary signi"cantly
when delamination of piezoelectric actuator occurs. Therefore, an adaptive control
algorithm is essential to control such systems.



TABLE 2

First and second frequencies, and modal control forces for Gr/Epoxy [0/$45/90]
s

composite beams with a delaminated piezoceramic actuator

First First modal Second Second modal
Delamination frequency control force frequency control force

Specimen no. size (mm) (Hz) (s~2/V) (Hz) (s~2/V)

1 0 (0%) 23)739 0)006977 128)697 0)02957
(Experiment)
2 12)5 (25%) 21)843 0)005287 127)384 0)03113
(Experiment)
3 25 (50%) 20)152 0)002333 118)325 0)01598
(Experiment)
4 37)5 (75%) 19)284 0)001001 114)547 0)007937
(Experiment)
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3. BASICS FOR NEURAL NETWORKS

Neural network is a mathematical model, which is arti"cially embodied by imitating
recognition or knowledge-acquiring process of human beings [19]. A neural network
consists of neurons, weights and biases. A basic multi-layer neural network structure is
shown in Figure 3. Learning is de"ned as a process that tunes weights and biases so as to
obtain the desired output values of the neural network. When learning procedure proceeds
using known input/output patterns, it is called supervised learning. Among several learning
algorithms, error back-propagation learning rule is most widely used and this algorithm is
applied in this study. The fundamental idea of the algorithm is to adjust weights and biases
of neural network so that the sum of squared error of outputs is to be minimized.

The neural network used in this study consists of three layers; one input layer, one hidden
layer, and one output layer. In what follows, the subscripts i, j, and k denote the respective
input, hidden, and output layer properties to prevent any confusion. Tangent sigmoid
transfer function was used for the hidden layer, and linear transfer function was used for the
output layer. The output error E (w, b) to be minimized by adjusting weights and biases is
de"ned as
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Figure 3. A layered neural network.
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Using similar procedures, the variations of the kth layer's biases can be obtained as follows:
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On the other hand, the desired output values of the hidden layer are not given in an
explicit way. Therefore, the weights and biases of the hidden layer should be calculated by
using chain rules. The variations of weights between input and hidden layers can be
calculated as follows:
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Using Equation (8), Equation (7) can be written as follows:
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Therefore, the variations of weights between input and hidden layers can be written in
a compact form as follows:
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Using similar procedures, the variations of the jth layer's biases can be obtained as follows:
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When the error back-propagation learning algorithm is applied, both the momentum
method and the adaptive learning rate method are often used in order to improve
convergence characteristics and the convergent speed [20, 21].

4. ADAPTIVE VIBRATION CONTROL USING NEURO-CONTROLLER

Among several control methodologies, the indirect model reference adaptive controller
has been used in this study. The control system consists of the neuro-identi"cation model
and the neuro-controller, and the overall architecture of the controller is shown in Figure 4.

The role of the neural network model (identi"er) for the plant is to obtain mathematical
representation of the real plant. This procedure is called forward modelling. The neural
network model is located in parallel with the plant as shown in Figure 5. The weights and
biases of the neural network model are adjusted so that the output of the neural network
model should be the same as that of the plant. The input values of the neural network model
are the present and previous plant inputs and outputs. In other words, the output value of
neural network model y

m
is calculated by using time sequences of the plant input u and

plant output y
p

as follows:

y
m
(t#1)"f (y

p
(t), 2 , y

p
(t!n); u (t), 2 , u (t!m)). (13)
Figure 4. Overall architecture for neuro-controller with neural-network model.



Figure 5. Forward modelling using neural network.

Figure 6. Connection of neural-network model and neuro-controller.
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After completing the forward modelling, the tuning for weights and biases of the
neuro-controller is performed by the error-back-propagation learning algorithm. Because
the desired output value of the neuro-controller is not given in advance, this value should be
calculated by the error-back propagation through the neural network plant model, as
shown in Figure 6. In this step, the desired output value of the plant is set to zero because
the purpose of the control is to suppress vibrations. When adjusting the weights and biases
of the neuro-controller, those of the neural network model are not changed. The output of
the neuro-controller, u

c
is calculated by using time sequences of the plant output, y

p
as

follows:

u
c
(t)"f (y

p
(t!1), y

p
(t!2), 2 , y

p
(t!n)). (14)

The numerical simulation for the adaptive vibration control has been performed by using
MATLAB and SIMULINK [22]. The experimental results in section 2 give the numerical
model of the plant. The neuro-controller has 10 and 20 neurons for the input and hidden
layers, respectively, and one neuron for the output layer. The output value of the
neuro-controller is used as both the control force of the plant and the 10th input of neural
network model. Here, the control force is the applied voltage to the piezo ceramic actuator.
The 10 previous output values of plant are used as input of neuro-controller. The neural
network model has 10 neurons for both input and hidden layers and one neuron for the
output layer. Nine previous output values of plant and output of neuro-controller are used
as the input values of the neural network model.
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In the numerical investigation, the sampling frequency 1 kHz has been used. The plant
output is given as the displacement signal, which is measured 20 mm apart from the
clamped boundary. External disturbances given in equation (15) are also applied to the
piezoceramic actuator.

u"40[square(u
1
t)#square(u

2
t)] (V), (15)

where u
1

and u
2

are the "rst and second natural frequencies of the specimen, respectively;
square(ut) is the 1 V peak-to-peak square wave signal with the angular frequency of u.
Figure 7 shows the control results when the external disturbance is applied during the "rst
1 s and the control action begins at 1 s. The displacement signal is shown in Figure 7(a)
when 75% delamination occurs abruptly at 1.1 s. It is found that the present adaptive
algorithm is adequate for vibration control when the abrupt delamination occurs in
piezoelectric bonding layer. Figure 7(b) shows the control results when delamination occurs
successively: from 0 to 25% at 1.07 s, to 50% at 1.14 s, and to 75% at 1.21 s. Good control
Figure 7. Transient vibration control for the Gr/epoxy [0/$45/90]
s

composite specimen: (a) Adaptive
vibration control result when 75% delamination occurs at 1)1 s; (b) Adaptive vibration control result when the
length of delamination grows successively. *, controlled; ) ) ) ) ) , uncontrolled.



Figure 8. Adaptive vibration control result for the Gr/epoxy [0/$45/90]
s

composite beam when the 75%
delamination occurs at 2)1 s under persistent disturbance.
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result is observed when the successive delamination occurs in piezoelectric bonding layer
during control.

Figure 8 shows the control results with persistent external disturbances. The control
action begins at 2 s. The 75% delamination occurs suddenly at 0.1 s after the application of
the control. It is observed that the present control system gives a good result even though
the disturbances are applied continuously.

From the above simulation results, the robustness of the present control system with
respect to the system parameter variations has been veri"ed. Note that in the numerical
investigation, the performance of the controller is proved to be excellent even though very
abrupt changes of the plant are considered.

5. REAL-TIME ADAPTIVE VIBRATION-CONTROL EXPERIMENT

In this section, the real-time adaptive vibration-control experiment has been performed.
In the experiment, tuning procedure for the neuro-controller and the neural-network model
should be accomplished in real time. Therefore, the number of neurons and the number of
maximum iteration are a little reduced in spite of sacri"ce of control e!ectiveness. In
addition, tip masses are attached to the beam specimen in order to lower natural frequencies
of composite specimens. Figure 9 and Table 3 show the con"gurations of composite
specimens used in the experiment. Normal and 50% delaminated specimens, on which 30 g
tip masses are attached, are used. Figure 10 shows the variations of the frequency response
due to the delamination. The "rst frequency and the "rst modal actuation force of each
specimen are summarized in Table 4. It is observed that the 50% delaminated specimen has
30% decreased "rst natural frequency and 50% decreased "rst modal actuation force
compared with those of the normal specimen.

Numbers of neurons for input and hidden layers of the neuro-controller are 10 and
8 respectively. The sampling frequency in real-time experiment is 100 Hz and the
displacement sensor is located 80 mm apart from the clamped boundary for the control.
Other parameters in the experiment are the same as those in section 4. The overall real-time
experimental set-up for the neuro-adaptive vibration control is shown in Figure 11. The



Figure 9. Geometry of the Gr/epoxy [0/90]
s
composite beam with a delaminated piezoactuator and tip masses.

Figure 10. Frequency response functions for Gr/epoxy [0/90]
s
composite beams with a delaminated piezoac-

tuator and tip masses **, 0% Delaminated specimen; ) ) ) ) ) ) , 50% Delaminated specimen.

TABLE 3

Dimensions and con,gurations of the composite beams with a delaminated piezoceramic
actuator and tip masses

Dimensions of Dimensions of
Stacking host structure piezoceramic Actuator Delamination Thickness of

Specimen sequence ¸]b]t ¸
p
]b

p
]t

p
location size adhesive

no. (Gr/epoxy) (mm3) (mm3) a (mm) (mm) (mm)

5 [0/90]
s

300]20]0)425 50]20]0)2 20 0 0)04
6 [0/90]

s
300]20]0)425 50]20]0)2 20 25 0)04

Note: Displacement sensor location for control: 80 mm from the clamped boundary.
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control algorithm is implemented using a DSP board (dSPACE DS1102). DS1102 uses
TMS320C DSP chip of Texas Instrument as a base component, and is equipped with 4 A/D
and 4 D/A converters. The external disturbance is generated from the source channel of the
FFT analyzer, and the laser displacement sensor is used to obtain displacement signal.

Figure 12 shows the changes of the frequency response functions of each specimen due to
the application of the control. These frequency responses were obtained by applying



TABLE 4

First frequency and modal control force of Gr/Epoxy [0/90]
s
composite beams with a

delaminated piezoceramic and tip masses

First modal
Delamination size First frequency control force

Specimen no. (mm) (%) (Hz) (s~2/V)

5 (Experiment) 0 (0%) 0)859 0)0002670
6 (Experiment) 25 (50%) 0)625 0)0001384

Figure 11. Experimental set-up for the real-time vibration control using neuro-controller.
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random external disturbance (maximum magnitude: 8 V, frequency range: 0}3.16 Hz).
Signi"cant reductions of the vibrational level of the "rst mode were observed for both the
specimens. In this experiment, the system parameter variations were not considered. The
reason why it is more e!ective to control the vibration of the 50% delaminated specimen is
that the "rst frequency of this specimen is lower than that of the normal specimen.
Therefore, it is possible for neural network parameters to be adjusted more delicately for the
50% delaminated specimen.

Figure 13 shows the control results when the delamination occurs suddenly during
control. It is di$cult to make delamination abruptly during the experiment. Therefore, in
the course of the control of the normal specimen, the weights and biases of the
neuro-controller and neural-network model were saved. Then the specimen was replaced
with the 50% delaminated specimen and the saved weights and biases of neuro-controller
and neural-network model were used as the initial values of weights and biases for the next



Figure 12. Vibration control results for the Gr/epoxy [0/90]
s
composite specimen. (a) 0% delaminated speci-

men with tip masses, (b) 50% delaminated specimen with tip masses. *, controlled; ) ) ) ) , uncontrolled.
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control experiment. External disturbances were applied continuously as

u"5]sin(u
1
t) (V). (16)

Figure 13(a) shows the control result when the control begins at 10 s for the normal
specimen. On beginning control, learning of neuro-controller and neural-network model
started and weights and biases of neuro-controller and neural-network model were saved
for the next initial values at 35 s. The magnitude of the sensor signal was reduced to about
5% of the uncontrolled magnitude. Figure 13(b) shows the control result for the 50%
delaminated specimen. In Figure 13(b), the saved data for weights and biases were used as
initial values. At 6 s the saved data were loaded and control began at the same time. Despite
the sudden change of the system, the vibration was e$ciently suppressed. These results
show that the present neuro-controller has e!ective control performance not only in
simulation but also in real-time experiment even though the system is much changed
abruptly.



Figure 13. Adaptive vibration-control results for the Gr/epoxy [0/90]
s

composite specimen when 50% de-
lamination occurs under persistent disturbance. (a) Adaptive vibration control for the 0% delaminated specimen,
(b) Adaptive vibration control for the 50% delaminated specimen.
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In order to highlight the adaptability of the present approach, we made comparison of
the neuro-controller with a conventional linear time-invariant control. A positive position
feedback (PPF) controller was designed, the transfer function of which is [23]

H (s)
PPF filter

"K
u2

f
s2#2f

f
u

f
s#u2

f

, (17)

where u
f

is the "lter frequency, which was set to the vibration frequency of the normal
specimen, and f

f
is the "lter damping ratio, which was set to 0)5 in this study. The controller

gain K was adjusted to be 3 for the consideration of maximum applicable voltage.
Maintaining all experimental conditions the same as those of Figure 13, we obtained
controlled results with the PPF controller as shown in Figure 14. For the normal specimen
we obtained a slightly degraded result because of geometric non-linearity due to large
amplitudes. When the same controller was applied to the 50% delaminated specimen, we
obtained very poor control e!ects. This fact indicates that the linear time-invariant
controllers have certain performance limitations when the system parameters are changed.



Figure 14. Vibration-control results for the Gr/epoxy [0/90]
s
composite specimen using the PPF controller.

(a) Vibration control result for the 0% delaminated piezoactuator, (b) Vibration control result for the 50%
delaminated piezoactuator.
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6. SUMMARY AND CONCLUSIONS

In this paper, neuro-adaptive vibration controls of composite beams subject to sudden
delamination have been investigated via both simulation and real-time control experiment.
We identi"ed the variations of the system characteristics such as natural frequencies and
modal actuation forces due to delamination by the experimental modal testing. Signi"cant
reductions of vibrational levels have been observed for both numerical and real-time
neuro-adaptive controls. The present neuro-adaptive controller has good robustness with
respect to the system parameter variations. From these investigations the following
conclusions can be drawn.

1. Variations of dynamic characteristics and actuation capabilities of composite beams
have been experimentally investigated according to the subsequent delamination in the
bonding layer of the piezoceramic actuator. As the delamination size increases, natural
frequencies and actuation capabilities decrease signi"cantly.
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2. Numerical simulations for the adaptive vibration control have been performed. In spite
of sudden changes in dynamic characteristics, the vibrations can be successfully
suppressed without instability.

3. A real-time adaptive vibration-control system has been prepared using a DSP board.
The present controller is proved to have good vibration suppression capabilities, even
though 50% delamination occurs suddenly.

4. In this study, the real-time control has been performed to suppress only the "rst
vibrational mode due to the limitation of hardware performance. However, it is expected
that the development of hardware such as neural network chip will be accelerated. With
the improvement of hardware, the present method can be extended to control
multi-modal vibrations and to control the structures with higher frequencies in the near
future.
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